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Instructions: 
 
Upon purchase of this Lesson, you will have gained access to this lesson and the corresponding 
assessment via the following link <http://hsc.unm.edu/pharmacy/radiopharmacyCE/> 
 
To receive a Statement of Credit you must: 

1. Review the lesson content 
2. Complete the assessment, submit answers online with 70% correct (you will have 2 

chances to pass) 
3. Complete the lesson evaluation 

 
Once all requirements are met, a Statement of Credit will be available in your workspace.  At 
any time you may "View the Certificate" and use the print command of your web browser to 
print the completion certificate for your records. 
 
NOTE: Please be aware that we cannot provide  you with the correct answers to questions you 
received wrong. This would violate the rules and regulations for accreditation by ACPE.  We can 
however, tell you which question number(s) you received wrong.  You may contact the CE 
Administrator to request this information. 
 
 
Disclosure: 
 
The Author does not hold a vested interest in or affiliation with any corporate organization 
offering financial support or grant monies for this continuing education activity, or any affiliation 
with an organization whose philosophy could potentially bias the presentation. 

 

Foreword: 
 
This lesson was originally published as Volume III, Number 5 in 1993.  It is being released again 
at the request of subscribers looking for information and references about alternate (from the 
package insert) quality control procedures.   
 
As with any alternate procedure, each site should test the proposed methods to self-confirm the 
validity of the procedure.  Validation should be conducted on material not intended for patients.  
It should be noted that alternative solvents may appear on federal, state or local hazardous 
materials listings.  Use appropriate precautions for personnel safety and protection. 
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CLINICAL TRIALS NETWORK AND THE [18F]FLT 
DEMONSTRATION PROJECT 

 
 

 
STATEMENT OF LEARNING OBJECTIVES: 

 
Describe the clinical trials network and the roles pharmacists can have in it.  

1. Understand the rationale for the establishment of SNM’s Clinical Trials Network 

2. Understand the purpose and mechanisms underlying the Biomarker Use Pathway 

3. Understand the pharmacology and potential utility of the Biomarker Use Pathway’s pilot 

agent, [18F]FLT 
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CLINICAL TRIALS NETWORK AND THE [18F]FLT 
DEMONSTRATION PROJECT 

 
Laura L. Boles Ponto, Ph.D., R.Ph, FAPhA 

 
INTRODUCTION 
Society of Nuclear Medicine (SNM) Clinical Trials Network (CTN) 
 
In October, 2007, the Society of Nuclear Medicine (SNM) met with the Food and Drug 

Administration (FDA), the National Cancer Institute (NCI) and representatives of 

pharmaceutical industry about the possibility of a multi-center investigational new drug (IND) 

application for [18F]fluorothymidine (FLT = 3’-deoxy-3’-[18F]fluorothymidine).  The SNM 

formally established the Clinical Trials Network (CTN) in September, 2008 followed by the 

announcement by the FDA of the approval of the first multi-center IND for FLT on October 1, 

2008.  Information on the CTN can be found on the SNM website at www.snm.org/clinicaltrials. 

 

The rationale for the establishment of the CTN can be synopsized in the preamble to the 

webpage home page. 

A major barrier to the development of new and effective drugs has been the time, 
complexity and cost of the regulatory process.  In recent years, the potential for 
imaging biomarkers to reduce this burden on the drug development process has 
become widely accepted as a means to speed the time to clinical use. 
(http://interactive.snm.org/index.cfm?PageID=8813 ) 

 

In other words, the purpose of the CTN is to facilitate the effective use of molecular imaging 

biomarkers (e.g., radiopharmaceuticals, contrast agents, bioluminescence agents) in multi-center 

clinical (i.e., therapeutic) trials.  Inherently, the “effective use” will require that these imaging 

biomarkers be validated for their intended purpose (e.g., assess response to treatment, categorize 

or stratify patients for inclusion in trials) and available for use in a reliable and reproducible 

fashion whereby the information gathered from this use can be successfully applied in the 

approval process for therapeutic drugs.  To this end, the CTN created the Biomarker Use 

Pathway designed to coordinate the planning and data collection of the multi-center clinical trials 

(i.e., CRO-type functions) utilizing the imaging biomarkers; the framework to generate 

centralized multi-center IND applications (e.g., FLT) and registries for both manufacturing and 

imaging sites, capable of producing the biomarkers and generating the imaging data, 
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respectively.  Therefore, the CTN, with the cooperation of the FDA, assists in coordinating the 

three-way cooperation between imaging centers, local manufacturing sites (currently, 

radiopharmaceutical) and pharmaceutical industry users (Figure 1) all with the expressed 

purpose to bring new drugs to market in the most expeditious manner.  

 

 

 

 

 

 

 

 

 

The governance of the CTN consists of a Strategic Planning Committee, whose membership is 

drawn from the leadership, membership and staff of the SNM, and a series of Operations 

Committees.  The Operations Committees are: 

 Scanner Validation Committee 

 Database Committee 

 Manufacturers Registry Committee 

 Trial Design Committee 

 Site Qualification Committee 

 Site Orientation and Education Committee 

Each of these committees is responsible for a given component of the CTN’s mission. 

 

Registries 

 
The CTN supports two types of registries, one for imaging centers and one for manufacturing 

sites.  The Imaging Site Registry is designed to ensure that the site has the capabilities necessary 

to generate quality imaging-based data.  Each site must demonstrate that it has state-of-the-art 

imaging technology, appropriately trained staff and the ability to adhere to standardized methods.  

Demonstration of this methodological adherence is through participation in the PET Phantom 

Imaging Sites 

Manufacturing 
Sites 

Pharmaceutical  
Partners 

Figure 1.Components of the CTN designed to facilitate the effective use of molecular 
imaging biomarkers in multi-center clinical trials. 
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production site basis and the multiple final products (formulations) for acceptable endpoint 

specifications.  Each manufacturing site must provide their unique CMC information for FDA 

review.  SNM’s multi-center INDs will provide the information necessary for cross-reference in 

the pharmaceutical clinical trials including standardized and harmonized imaging protocols. 

 

Future Biomarker Use Pathway candidates for multi-center INDs will embody the following 

features.  Specifically, have 

 Established pharmacology and toxicology. 

 Established chemistry and manufacturing (CMC) information from multiple 

manufacturing sites. 

 Established multiple methods for production on different synthesis equipment. 

 A minimum of one site with an on-going human study that demonstrates both safety 

and efficacy of the proposed agent. 

 A minimum of one well-defined, clinical (human) imaging protocol. 

The Biomarker Use Pathway is not limited to PET agents only but contrast agents for MRI, 

fMRI, CT, ultrasound (US) and optical imaging agents are all potential candidates for multi-

center INDs.  The fundamental goal is to provide a means by which imaging information can be 

widely and consistently applied to address critical questions in therapeutic clinical trials, 

resulting in reliable data acceptable to the FDA for making drug approval or labeling decisions. 

 

SURROGATE MARKERS IN CANCER TREATMENT 
 

There are significant needs for surrogate markers to assess response to treatment in many 

diseases, but especially in cancer treatment, whether in treatment trials or to personalize medical 

care.  Cancer is frequently a life-threatening disease, but survival, although the ultimate 

assessment of the success or failure of a particular therapeutic option, is not a timely or, in some 

cases, an ethical marker.  As molecular medicine evolves, validated markers of critical cellular 

processes are needed to assess intermediate response measures.  In order for the goal of 

personalized medicine to be recognized, methods need to be developed to determine whether a 

particular therapeutic course is working or not and at a point of time where viable alternatives 

remain available.  Having a reliable method to predict early in the course of therapy the eventual 
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patient’s outcome will provide for the optimization of treatment.  Specifically, a less toxic initial 

approach, potentially decreasing adverse effects, could be employed if biomarkers, such as 

imaging changes, could signal the need to intensify treatment or institute an alternative therapy, 

possibly based on a molecular mechanism refined by information gathered from the biomarker.  

In addition, the knowledge of probable or impending treatment failure could result in the 

discontinuation, thereby avoiding the side effects of ineffective treatments, and/or the institution 

of alternative therapies, such as surgery, in a timely manner.  Future directions may be aimed at 

the molecular characterization of disease (e.g., tumors) so that the a priori choice of treatment is 

made on a rational basis. 

 

Treatment response in oncologic treatment trials is frequently based on the World Health 

Organization’s (WHO) RECIST (Response Evaluation Criteria in Solid Tumors) measures.  

RECIST measures are based on changes in tumor size as determined by CT imaging.  Recently, 

an alternative called PERCIST (PET Response Evaluation Criteria in Solid Tumors), a measure 

that is based on changes in FDG-based tumor standardized uptake values (SUVs) has been 

proposed1, 2.  The merits of RECIST versus PERCIST in the personalization of cancer therapy 

have recently been reviewed in a special supplemental issue of the Journal of Nuclear Medicine 

(volume 50, supplement 1, May, 2009). 

 

Part of the factors that influence SUVs in general are presented in Figure 3.  The factors in 

unbolded text are technical in nature and independent of the tracer being imaged.  The bolded 

text are factors that are tracer and/or patient-dependent factors, some of which represent the 

process of interest (e.g., glucose metabolism) and some of which are nuisance factors that may 

adversely affect the information content of the images.  The effect of blood glucose on FDG 

SUV is one of these nuisance factors.  Figure 4 represents the theorized pharmacokinetic model 

for the biodistribution of FDG.  Cellular uptake and retention of FDG utilizes transport into the 

cells via the glucose transporters (GLUT) and phosphorylation to FDG-6-P via hexokinase.  Both 

processes operate in competition with endogenous glucose.  Furthermore, the action of the 

various GLUTs are, in some cases, insulin-independent and in others, insulin-dependent.  

Therefore, the blood glucose level influences the uptake of FDG by competing for transporter 

and hexokinase action as well as stimulating insulin and the insulin-dependent uptake into tissues 
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course with therapy is driven by changes, primarily, in k3 (thymidine kinase phosphorylation) 

with essentially no change in K1 and k2 (that is why the initial phases of the time course do not 

differ significantly). For clinical utility, there needs to be a robust time window for optimal 

imaging.  Figure 11 demonstrates the consistency between the FLT SUV determined from 55 to 

60 minutes and a broader time window ranging from 65 to 100 minutes post-injection. Note the 

high correlation between the two measures indicative of little change within this window.  Figure 

12 shows the significant change in FLT SUV (maximum and mean), determined at 60 minutes 

and during a whole-body imaging acquisition for primary head and neck tumors, cervical spinal 

marrow and metastases.  Figure 13 compares the change in FLT SUV to the change in the influx 

rate constant, K-Patlak (determined from a Patlak analysis (requiring dynamic imaging and 

information on plasma FLT concentrations versus time)).  The large correlation (r > 0.9) between 

the SUV and K-Patlak indicates that similar information on proliferation changes may be 

garnered from the technically much less difficult and clinically feasible semi-quantitative SUV 

approach to data analysis as that determined from the more technically demanding Patlak 

analysis.  Therefore, FLT imaging needs to be initiated after a minimum of 45 minutes to 

accurately reflect changes in proliferation3; that, although consistent imaging times should 

always be used for all studies, the optimal imaging time window is flexible enough to 

accommodate a clinical scenario; and that the simpler SUV parameter is adequate to characterize 

the change in proliferation. 
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Utility of FLT Imaging 
 
Table 1 lists the tissue and/or type of pathology for which FLT imaging utility has been 

evaluated as well as references for information on FLT pharmacokinetics, dosimetry and general 

review articles.  Specific information on the utility of FLT in each of the types of cancer listed is 

beyond the scope of this lesson, however, the references presented will provide the reader with 

an informed starting point for the evaluation of potential FLT uses.   

 
Table 1 

FLT References by tissue/pathology type, general information (e.g., dosimetry, 
pharmacokinetics) and review articles 

Tissue/Pathology Reference 
Bone marrow disorders 6-9 
Breast cancer 10-17 
Colorectal cancer 18-23 
Esophageal cancer 17, 24-26 
Gastric cancer 27, 28 
Germ cell tumors 29 
Gliomas  30-45 
Head and neck cancer 3, 5, 46-53 
Hepatocellular carcinoma 54 
Leukemia 55 
Lung cancer 48, 56-71 
Lymphoma 72-76 
Melanoma 77, 78 
Neurosarcoidosis 79 
Pancreatic cancer 80 
Renal carcinoma 81 
Sarcomas 50, 82-84 
Dosimetry and toxicology 33, 45, 85-87 
Pharmacokinetics 19, 30-32, 47, 48, 85, 88-92 
Tumor volume measurements 17 
Reviews 93-100 

 
Two examples of the use of FLT treatment and toxicity response assessments are presented 
below. 
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ASSESSMENT QUESTIONS 
 

 
1. The purpose of the SNM’s Clinical Trials Network (CTN) is to facilitate the effective use 

of imaging biomarkers in multicenter therapeutic trials by 
 

a. Linking sponsors of trials with qualified radiopharmaceutical manufacturing sites.  
b. Linking sponsors of trials with qualified imaging sites.  
c. Providing multicenter INDs 
d. Facilitating the standardization and harmonization of imaging protocols. 
e. All of the above. 

 
2. Imaging Site Registry requires all of the following except 

 
a. State-of-the-art imaging technology. 
b. Appropriately trained imaging staff. 
c. Fee for participation as a registered imaging site 
d. Ability to adhere to standardized methods as demonstrated by imaging of the PET 

Phantom. 
e. All of the above are required. 

 
3. The Manufacturer Registry is designed to 

 
a. Identify manufacturing sites capable of effective execution of CMC defined in the 

particular IND. 
b. Qualify manufacturing sites capable of effective execution of CMC defined in the 

particular IND. 
c. Link sponsors of clinical trials to manufacturers within specific geographic areas. 
d. All of the above. 

 
4. [18F]Fluorothymidine (FLT) is the initial CTN Demonstration Project for the following 

reasons except 
 

a. FLT is a promising but under-utilized tracer for amyloid deposition, the hallmark 
pathology of Alzheimer’s disease. 

b. A number of single site INDs were available for FLT made by a variety of 
processes resulting in multiple final products with acceptable endpoint 
specifications therefore, providing an ideal scenario for a multicenter IND. 

c. FLT is a promising but under-utilized biomarker for cell proliferation. 
d. Efficacious surrogate markers are needed for oncologic therapeutic trials and 

there is evidence of the potential of FLT in the monitoring of the response to 
therapy in a variety of tumor types. 
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5. Significant differences exist in the appearance of an FLT versus an FDG image in all of 
the areas but 

 
a. Brain 
b. Bladder 
c. Heart 
d. Bone marrow 
e. Tumor 

 
6. Both FLT and FDG are generally modeled using a two tissue compartment model (i.e., 

plasma plus two states in tissues).  Which of the following statements is true regarding 
the model. 

 
a. FLT is transported from the blood into the cells by the actions of nucleoside 

transporters. 
b. FLT is phosphorylated and then incorporated into DNA. 
c. FLT is phosphorylated by thymidine kinase. 
d. FLT must be metabolized to the glucuronide before cellular incorporation. 
e. All of the above are true. 

 
7. Monitoring the response to treatment using an imaging biomarker requires that: 
 

a. Changes in uptake of the tracer reflect changes in the process of interest only. 
b. Pharmacokinetics of tracer delivery to the tissue of interest (e.g., tumor) is 

consistent between the imaging times. 
c. Full kinetic modeling must always be applied to the analysis of the imaging data 

because simplified methods like SUVs do not adequately reflect changes in the 
process of interest. 

d. All of the above are true. 
e. A & B above are true. 

 
8. Reliability and comparability of SUVs from time 1 to time 2 depend on all of the 

following but: 
 

a. The adherence to strict technical methodologies. 
b. Identical levels of the physiologic process being mapped (e.g., glucose 

metabolism, proliferation). 
c. Similar delivery of the tracer on a dose administered (i.e., mCi/kg) basis to the 

tissue of interest. 
d. Lack of significant changes in organ function that mediates excretion and/or 

metabolism of the tracer. 
e. All of the above are required. 
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9. FLT imaging of bone marrow function is potentially useful for: 
 

a. Determining the degree and extent of bone marrow suppression secondary to 
treatments such as radiation therapy. 

b. Mapping marrow space for radiation therapy treatment planning. 
c. Determining the relative contribution of radiation therapy and chemotherapy to 

marrow suppression. 
d. Detecting compensatory increases in marrow function. 
e. All of the above are potentially useful. 

 
10. Changes in FLT uptake in tumors with chemoradiation is driven primarily by changes in 

the activity of:  
 

a. Hexokinase 
b. GLUT 
c. Thymidine kinase (TK1) 
d. Nucleoside transporters 
e. BACE1 

 
11. Non-pathological FLT uptake occurs in all of the following structures except: 

 
a. Liver 
b. Bone marrow 
c. Brain  
d. Heart 
e. Brain and heart 

 
12. FLT update in bone marrow: 

 
a. Occurs only as a consequence of bone marrow neoplasms or metastases. 
b. Is more profoundly reduced by radiation therapy than by radiation therapy. 
c. Is increased with in the radiation treatment field. 
d. Is unaffected by chemoradiation treatments. 

 
13. Early response of tumors to chemoradiation therapy can potentially be assessed by 

changes in all of the following FLT parameters, except: 
 

a. K1 
b. KFLT, influx rate constant determined from compartmental modeling. 
c. KPatlak, rate constant determined from Patlak noncompartmental modeling. 
d. Maximum SUV 
e. Mean SUV 
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14. Accurate standardized uptake values (SUVs) require all of the following but: 
 

a. Accurate calibration of the scanner. 
b. Accurate measurement of the administered dose. 
c. Accurate measurement of the blood glucose level. 
d. Accurate measurement of the patient’s weight. 
e. Accurate measurement of the time between administration of the dose and 

imaging. 
 
15. The potential role(-s) for nuclear pharmacists in the Clinical Trials Network (CTN) is/are: 
 

a. To assist associated imaging facilities to meet the requirements for Imaging Site 
Registration. 

b. To facilitate meeting the requirements for Manufacturer Site Registration at their 
nuclear pharmacy. 

c. To assist in generating the CMC information at their site for inclusion in a 
multicenter IND. 

d. To provide ideas and feedback to the CTN for new agents to be included in the 
Biomarker Use Pathway. 

e. All of the above. 
 
16. FLT is: 
 

a. Metabolized to FLT-monophosphate by nucleoside transporters. 
b. Metabolized by FLT-glucuronide by thymidine kinase. 
c. Metabolized to FLT-glucuronide and then excreted. 
d. Not metabolized. 
e. B and C above. 

 
17. TK1: 
 

a. Phosphorylates thymidine and FLT so that both can be incorporated into DNA. 
b. Phosphorylates thymidine and FLT but only thymidine is incorporated into DNA. 
c. Phosphorylates thymidine but not FLT but both are incorporated into DNA. 
d. Transports thymidine and FLT from plasma into the cells. 
e. None of the above. 

 
18. The use of FLT for monitoring the response to therapy requires: 
 

a. The comparison of SUVs determined at very early times since changes with 
therapy occur in the initial uptake of FLT not the phosphorylation. 

b. The comparison of SUVs determined at later times (> 45 minutes post-
administration) since changes with therapy occur in the phosphorylation of FLT 
not in the initial uptake. 

c. Compartmental modeling of FLT kinetic parameters because SUV changes do not 
robustly characterize changes with therapy. 
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d. Non-compartmental modeling of FLT kinetic behavior because compartmental 
modeling and SUV parameters do not robustly characterize changes with therapy. 

e. Comparative imaging with FDG because FLT imaging alone does not robustly 
characterize changes with therapy. 

 
19. FDG is: 
 

a. An ideal agent for monitoring tumor response to therapy because the uptake is 
only affected by treatment-related effects. 

b. An ideal agent for monitoring tumor response to therapy because it captures 
changes in inflammatory responses as well as tumor metabolic changes. 

c. An inappropriate agent for monitoring tumor response to therapy because glucose 
metabolism does not change with chemoradiation therapy. 

d. An useful but not ideal agent for the monitoring of tumor response to therapy 
because factors like blood glucose and inflammation not just tumor metabolism 
may influence uptake. 

e. Never used for monitoring the response of tumors to therapy. 
 
20. Requirements for future candidates for the Biomarker Use Pathway multi-center INDs 

include all but the following: 
 

a. The agent must have an established pharmacology and toxicology. 
b. The agent must be a radiopharmaceutical for PET or SPECT use. 
c. The agent must have an established chemistry and manufacturing (CMC) 

information from multiple manufacturing sites with multiple methods for 
production on different synthesis equipment. 

d. The agent must have a minimum of one site with an on-going human study that 
demonstrates both safety and efficacy. 

e. The agent must have a minimum of one well-defined, clinical (human) imaging 
protocol. 


