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DRUG-INDUCED CHANGES IN RADIOPHARMACEUTICAL BIODISTRIBUTIONS 
 
 

STATEMENT OF OBJECTIVES 

Upon completion of this lesson, the reader should be able to: 

1. Understand the context in which drug-pharmaceutical interactions occur; 

2. Have a broad perspective on the literature of such interactions, and the rigour of our under-
standing of them; 

3. Recognise the classifications of such interactions; 

4. Be familiar with the broad outline of the relevant literature; 

5. Have a systematic approach in mind in consulting on such interactions either before or after 
the event. 
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DRUG-INDUCED CHANGES IN RADIOPHARMACEUTICAL BIODISTRIBUTIONS 

By 
Brian Lentle, MD, Raj Attariwila, MD, and Donald Lyster, PhD 

University of British Columbia 
 
 

INTRODUCTION 
Reactions to drugs are well known al-

though it has recently been proposed that 
they should be classified differently (1). 
Equally, it has long been recognized that in-
teractions may occur between medications 
when two or more are administered concur-
rently (2 – 6).  These interactions may change 
the kinetics, biodistribution or efficacy of 
conventional medications.  From a historical 
perspective Avery first classified this phe-
nomenon in a systematic way (2).  Since then 
the number of such interactions known to 
occur has grown dramatically (3 – 6), becom-
ing so important and complex that most phy-
sicians now access information about poten-
tial drug interactions using electronic data-
bases.  It appears that many of these reactions 
are mediated predictably through the family 
of isoenzymes known as cytochrome P-450 
with some drugs inhibiting and some induc-
ing a P-450 isoenzyme. 

However, not all interactions are adverse 
as, for example, probenecid increases the ab-
sorption of orally administered penicillin (7). 

Nuclear Medicine and Radiopharmaceu-
ticals 

The basis of in vivo nuclear medicine 
practice has been described as follows (8): 

“Once a radiopharmaceutical agent is 
administered to a patient, the biodistribution 
process occurs.  This process consists of the 
substance’s absorption, distribution, meta-
bolism and excretion.  When the normal bio-
distribution pattern of a substance is known, 
any irregular pattern may suggest the pres-
ence of disease.” 

When radiopharmaceuticals are used as 
tracers to investigate, diagnose and treat dis-
ease, the dose administered is rarely large 
enough to cause physiological effects.  Nev-
ertheless to be effective as markers of some 
biochemical or molecular process, radio-
pharmaceuticals must necessarily be biologi-
cally active.  It follows that they may also be 
prone to interference from or interaction with 
concurrent treatment medication(s).  Histori-
cally in nuclear medicine it became clear that 
many drugs, iodine containing and otherwise, 
altered thyroid uptake and thyroid imaging 
using any and all of the radiotracers in use at 
any time. In the 1960s and 1970s sporadic 
reports began to appear of changes in the dis-
tribution of radiopharmaceuticals caused by 
other non-radioactive medications.  Since, as 
noted above (8), the primary purpose of a 
radiopharmaceutical “drug” is often to exam-
ine a tissue or disease process by imaging the 
distribution of a tracer, the abnormal biodis-
tribution resulting from such an interaction 
was often immediately obvious. 

A few workers, recognizing that this was 
a systematic and not sporadic problem, began 
to collect, catalogue, investigate, and report 
upon such altered biodistributions (8 – 21).  
Meanwhile the number of accounts of drug-
radiopharmaceutical interactions has contin-
ued to grow.  Currently, a tabulation of such 
interactions is accessible from the web (20).  
Unfortunately in the context of a subject that 
is constantly evolving these catalogues often 
ignore or are late to recognize findings such 
as those that relate to newer radiopharmaceu-
ticals such as F-18 fluorodeoxyglucose now 
coming into widespread use, and newer 
treatments such as colony stimulating factor 
in malignant disease. 
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Initial observations focused on altered tis-
sue and organ distributions.  It has also be-
come clear that drug-radiopharmaceutical 
interactions may change the distribution of 
the tracer not only in space – that is from or-
gan to organ in the body – but also in time by 
altering kinetic rate-constants (10, 11). 

Classification of Non-Radiopharmaceuti-
cal or Conventional Drug-Drug Interac-
tions 

Drug interactions have been classified in 
a number of ways (2, 10, 11, 14) derived 
from the classification proposed by Avery (2) 
and a consensus has emerged in favour of a 
dynamic classification as follows: 
• Pharmacokinetic interactions occur 

when the absorption, distribution, meta-
bolic fate or excretion of one drug alters 
the behaviour of another drug, including 
such variables as metabolite production, 
serum concentration, drug excretion and 
bioavailablity. 

• Pharmacological interactions occur 
when the intended or physiological or bio-
logical effects of a drug, in its usual dose, 
alters the physiological action of a second 
drug. 

• Toxological interactions result from a 
side effect or adverse reaction to a drug.  
These include drug-induced disease, im-
pacting on the serum concentration, 
bioavailability or other characteristics of a 
second drug. 

• Pharmaceutical interactions occur as a 
result of the physical preparation or sus-
pension of a drug interacting with the 
preparation or suspension of a second 
drug. 

Classification of Drug-Radiopharmaceuti-
cal Interactions 

Laven has indicated that the nuclear phar-
macist has a substantial responsibility in 
evaluating and recognizing drug-radiophar-
maceutical interactions (22).  As the number 

of drug-radiopharmaceutical interactions has 
grown it has become increasingly necessary 
to find a systematic means of classifying 
them beyond a simple listing.  Also, as 
Hladik and others have pointed out (12), the 
first distinction to be made in nuclear medi-
cine practice is between intended and unin-
tended effects of medications.  It has become 
commonplace in clinical nuclear medicine to 
use pharmacological agents to enhance diag-
nostic procedures – so-called interventional 
nuclear medicine (23 – 25).  Examples are 
the use of cimetidine to increase the conspi-
cuity of ectopic gastric mucosa, dipyramidole 
or adenosine to simulate stress blood flow to 
the myocardium, the use of angiotensin con-
verting enzyme inhibitors in renal investiga-
tions and the use of sincalide and morphine 
in gall-bladder imaging respectively to pro-
voke gall-bladder contraction or contraction 
of the spincter of Oddi.  Some of these pro-
cedures may be quite aggressive such as the 
precipitation of seizure activity during ad-
ministration of an agent to map cerebral 
blood flow (25). 

A further complication that needs to be 
borne in mind is that some drugs may modify 
the effects of the interventional agents used 
and thus indirectly influence diagnoses 
reached using radiopharmaceuticals.  Thus 
for example, captopril renography may be 
misleading in patients in whom a hypotensive 
response is induced or in those taking cal-
cium antagonists (26 – 28) and caffeine, theo-
phylline and aminophylline may each block 
dypridamole or adenosine induced coronary 
vasodilatation leading to false-negative 
findings when coronary artery disease is be-
ing investigated (29, 30).  

A second order classification of drug-
radiopharmaceutical interactions can be de-
rived from that described above.  It needs to 
be modified for drug-radiopharmaceutical 
interactions and enhanced as follows: 
a) To recognize the impact of tissue toxic-

ity in particular since such toxicities ac-
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count for many radiopharmaceutical lo-
calizations.  

b) To include indirect interactions.  
c) To include identifiable changes on imag-

ing which occur by an as yet unknown 
mechanism.  This leads to a group of in-
teractions inevitably described as un-
known.   
Thus a classification for drug-radiophar-

maceutical interactions might be as follows 
(10, 12): 
• Pharmacologic interactions 
• Pharmacokinetic interactions 
• Pharmaceutical interactions 
• Interactions due to tissue toxicity 
• Unknown 

However, for the purposes of this analy-
sis we have proposed a qualitative  
pharmacokinetic model that, for analytical 
purposes, seems to provide a tool to both un-
derstand existing drug-pharmaceutical inter-
actions and to analyze those that are now un-
known.  In drug-radiopharmaceutical interac-
tions the starting point is usually image or 
alterations in measured function (such as car-
diac ejection fraction) which prompt further 
analysis and thus a simplified pharmacoki-
netic analysis seems to provide a logical tool 
which corresponds to the analogous approach 
to the clinical problem at the “bedside.” 

Pharmacokinetics 
Pharmacokinetic modeling has proved to 

be a powerful way in which to analyze the 
distribution, kinetics and behavior of both 
conventional pharmaceuticals (31, 32) and 
radiopharmaceuticals (33, 34).  At its most 
elegant such modeling is quantitative in de-
scribing the size of the compartments into 
which drugs distribute and the rate constants 
for transfer between compartments.  While 
the data on drug-radiopharmaceutical interac-

tions do not support quantitative pharma-
cokinetic modeling, for the purposes of this 
review we have used a classification that de-
rives from a qualitative pharmacokinetic 
model.  In practical terms recognizing from 
imaging that a radiotracer is confined to an 
abnormal compartment, such as the blood (as 
in Figure 1) or the interstitial fluid volume (as 
in Figure 2), can be the first step.  This, along 
with a careful history from the patient, is key 
to resolving the nature of the interaction.  
Needless to say both images (Figures 1 and 
2) were made with the original intent of ex-
amining the skeleton with Tc-99m phos-
phates.  We shall use this pharmacokinetic 
model to describe a range of effects.  The 
synopsis of reactions listed below also fo-
cuses on organs and tissues, not the drugs 
themselves, consistent with the pharmacoki-
netic model. 

Figure 1. A Tc-99m phosphate bone scan in 
a patient who had recently been treated 
with parenteral iron chelate.  The tracer has 
bound to the chelate and is retained in the vas-
cular space with cardiac, hepatic, splenic and 
major blood vessel visualization and poor sig-
nal-to-noise ratio in respect of the intended 
bone scan (A = anterior views, B = posterior 
views). 
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Figure 2. Posterior images from Tc-99m 
phosphate bone scans in a patient, left, be-
fore treatment and, right, while being 
treated for osteoporosis with etidronate.  
Skeletal uptake of the tracer in the images on 
the right is largely imperceptible although at 
least one metastatic lesion is noted in the up-
per lumbar spine.  The tracer is otherwise uni-
formly distributed in the interstitial and vascu-
lar spaces which are not distinguishable from 
each other. 

 
 
The normal pharmacokinetic model is 

illustrated in Figure 3 and we shall use this as 
a framework to describe a range of effects in 
the synopsis of reactions listed below.  We 
will thus focus on compartments, organs and 
tissues, not on drugs themselves.  As previ-
ously noted there are web-based resources 
available to look up particular drug-
radiopharmaceutical interactions (19, 20).  At 
the same time the subject of iatrogenic 
changes in tracer distributions has proved 
capable of being generalized to include a 
number of such changes in tracer distribu-
tions due, not to drugs, but to radiation, sur-
gery and other physical agents and insults not 
described here (10, 15). 

The lesson to be learned is that anyone 
examining a nuclear medicine image as an 
abstraction divorced from the reality of dis-
ease, treatment and the patient puts all at risk. 

Fig. 3.  Normal qualitative pharmacokinetic 
model. 

 

Evidentiary Basis and Critique 
The evidence for drug-radiopharmaceuti-

cal interactions is very uneven ranging from 
prospective studies (often in animals) to sin-
gle case reports.  Given the proper emphasis 
now being placed on an evidentiary basis for 
medical practice (35) it is appropriate to con-
sider how much weight should be given to 
the evidence contained in reports of drug-
radiopharmaceutical interactions.  Evidence 
in medical research and practice can be clas-
sified as follows: 
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Table 1. Levels of Evidence [after Meltzer 
et al. (36)] 

Level 1+ Systematic overview or meta-analysis 
of randomized controlled trials (RCTs) 

Level 1- One RCT with adequate power 
Level 2+ Systematic overview or meta-analysis 

of level 2 RCTs 
Level 2- RCTs that do not meet level 1 criteria 
Level 3 Non-randomized clinical trial or cohort 

study 
Level 4 Before-after study, cohort study with 

non-contemporaneous controls, case 
controlled study 

Level 5 Case-series without controls 
Level 6 Case report or case series of <10 pa-

tients 
The reports analyzed here have been classified using this system 
but modified to indicate if the data derive from animal (A) or 
human (H) studies or both (AH). 

 
To date evidence-based medicine and this 

tabulation are more usually directed to treat-
ment interventions and outcomes with the 
emphasis on randomized controlled trials.  
There is, as yet, no good equivalent in diag-
nostic medicine.  However, the use of the 
classification in Table 1 serves to suggest the 
evidentiary basis available to support the case 
descriptions provided  in this synopsis and to 
illustrate the rigor, or more often the lack 
thereof, of the analyses reported (35). 

In addition it should be noted that not 
only is the evidence sometimes weak but also 
the language of the reports is often uncritical.  
For example, there are publications describ-
ing “uptake” of tracers at sites of interstitial 
injection (see below).  Any tracer that dis-
tributes into, and has a more than transient 
residence time in the interstitial space will 
appear to localize at such sites, but no energy 
is expended and no “uptake” occurs.  A more 
likely mechanism is that there is a local in-
flammatory response with a corresponding 
expansion of the interstitial fluid volume.   

Dosage and Bioavailability 
It must be noted that there is rarely any 

critical evaluation of the mechanisms in-
volved or the duration of drug-radiopharma-
ceutical interactions following cessation of 
the drug-induced interaction in question.  
Equally, few studies have examined dose-
dependance or other variables.  How such 
interactions impact on the bioavailability of 
either non-radioactive drug or radio-pharma-
ceutical is almost never explored.  Addition-
ally, while alterations to radiopharmaceutical 
dosimetry resulting from such interactions 
have been recognized to occur, most remain 
unquantified (37). 

Site Specificity 
While modern pharmaceutical design of-

ten provides for site specific agents there is 
good precedent for such drugs to have unex-
pected biodistributions and sites of localiza-
tion (38, 39).  Therefore, it is not always 
practical to analyze drug distributions or 
drug-radiopharmaceutical interactions on the 
basis of the anticipated biodistributions of a 
non-radioactive medication. 

A SYNOPSIS OF DRUG-RADIOPHAR-
MACEUTICAL INTERACTIONS 

It should be noted that not all unexpected 
radiotracer distributions are attributable to 
interactions with concurrent medication.  
Surgical and other interventions as well as 
radiation may be evident from radionuclide 
images (10, 15).   

Changes in the Preparation 
Some drug-radiopharmaceutical interac-

tions may occur before the radioactive  
preparation is injected.  For example, oxida-
tion of technetium in a syringe of Tc-99m 
methylene diphosphonate (MDP) may result 
in visualization of the thyroid gland, gastric 
mucosa, etc. by virtue of the radiopertech-
netate formed (level 6H and in vitro 
data)(40).  The same result has been observed 
from the use of povidone iodine to swab the 
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septum on a vial of Tc-99m sulfur colloid.  
Moist antiseptic solution may enter the vial 
on needle puncture and oxidize the techne-
tium to pertechnetate (level 6H)(41).  Alumi-
num used in syringe manufacture has been 
found to impact on the stability of radio-
pharmaceuticals altering their biodistribution 
(level 6H)(42), while other but unknown sy-
ringe extractables may also have a similar 
effect (level 6H and in vitro data)(43). 

Further causes of unexpected biodistribu-
tions of radiotracer may result from injections 
inadvertently made intra-arterially, through a 
catheter or interstitially (all level 6H) (10, 44 
– 51).  These mishaps usually have typical 
and predictable appearances on a scan.  On at 
least one occasion, injection into a Swan-
Ganz catheter has been reported to result in a 
false positive lung ventilation-perfusion scan 
(level 6H)(44).  Intra-arterial injection and 
extravasation has also mimicked disease – 
regional tumor spread in one report and 
chronic regional pain syndrome (reflex sym-
pathetic dystrophy) in another – with the po-
tential for diagnostic error (level 6H)(50, 51). 

Local Changes Associated with Injection 
Sites  

A number of reports describe that either 
specific or non-specific interactions between 
subcutaneous or intramuscular injectates and 
radiopharmaceuticals may occur to the point 
of being evident on images.  Examples of 
such reported instances include Tc-99m 
MDP and radiogallium deposition at an infil-
trate of calcium gluconate (level 6H)(52 – 
54), Tc-99m phosphates at a site of intramus-
cular iron dextran (Level 6H)(55, 56) and Tc-
99m MDP at sites of heparin administration 
(level 6H) (57 – 59).  It may be argued  that 
some of these interactions are specific in na-
ture.  Examples are Tc-99m MDP in binding 
to calcium gluconate or iron dextran causing 
trans-chelation and binding of Tc-99m.  
However, as noted above, a localized in-
flammatory response may accompany a sub-
cutaneous or intra-muscular injection and 

will expand the interstitial space at such a site 
(level 6H) (10, 60 – 62).  Therefore, it is to be 
expected that such lesions may be observed 
on scan images made using a radiopharma-
ceutical distributing into that space particu-
larly if it is cleared relatively slowly, with or 
without an element of specific localization. 

Blockade of Transfer 
Transfer blockade results from some 

process that prevents or reduces the amount 
of the radiopharmaceutical leaving a com-
partment (usually vascular) following ad-
ministration (Figure 4). 

Figure 4. Qualitative pharmacokinetic 
model illustrating transfer blockade with 
retention of the tracer in the vascular com-
partment. 
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Bone 
When a Tc-99m phosphate is injected in 

the presence of unusually high serum concen-
trations of iron (iron dextran) the result is an 
image in which blood pool predominates 
with impaired target-to-noise ratios in respect 
of bone.  The supposition is that the techne-
tium is trans-chelated and binds to the dex-
tran, thus becoming trapped in the vascular 
space (multiple reports, level 6H)(63 – 69) 
(Figure 1). Penicillamine has been reported to 
behave in the same way in animal experi-
ments (level 3A) (70). A variation on this 
theme arises from the therapeutic use of an 
iron colloid-chondroitin sulfate complex 
(Blutal, Yuham Co., An Yang, Korea) that 
appears to bind the technetium by a similar 
mechanism, but is then phagocytosed into the 
reticuloendothelial system with a liver image 
resulting (level 6H)(69). 

Disease Identification with Gallium-67 
Gallium–67 salts were first explored as 

potential bone scanning agents and low-
specific activity gallium-67 citrate distributes 
largely into bone.  The usefulness of gal-
lium–67 in investigating disease (chiefly ma-
lignant and inflammatory processes) only 
became apparent when high-specific activity 
gallium was used (71, 72).  Although imper-
fectly understood this mechanism of action 
appears to depend, in part, on the binding of 
gallium to transferrin and other serum pro-
teins that bind metals.  It appears that if se-
rum concentrations of iron, aluminum or gold 
are sufficiently high to occupy all of the pro-
tein metal-binding sites (and presumably sta-
ble gallium plays this role in low-specific ac-
tivity preparations) then an unusual biodis-
tribution results (level 3A, 5H) (73 – 92) in 
what has been described as a “gallium bone 
scan” (90).  The abnormally high serum gal-
lium concentrations associated with this phe-
nomenon have been reported to arise either 
directly from metals (level 5H) (85, 91), or 
have been attributed to the iron released in 
cell death by the effective treatment of can-

cers (levels 4A, 5H) (73, 83, 84, 89, 90), or, 
in one report, by multiple blood transfusions 
(level 6H) (86).  Moreover, there have been 
attempts in animals and humans to alter the 
uptake of gallium in tumors by agents that 
modulate gallium binding, and such attempts 
obviously depend upon the timing of the use 
of agents such as iron or desferoxamine in 
relation to the gallium-67 injection (74–82, 
85, 87, 88). 

Initial case reports suggested that gadolin-
ium diethylenetriaminepentaacetic acid (Gd-
DTPA) used in magnetic resonance imaging 
(MRI) might also impact on the biodistribu-
tion of radiogallium (level 6H) (93), but fur-
ther evidence suggests this is not the case 
(levels 3A, 5H) (94–96).  Gadolinium salts as 
such are quite toxic so that the metal as used 
for MRI contrast is in the form of a non-toxic  
DTPA chelate so that it would be surprising 
for the gadolinium to behave as an ion and to 
competitively bind to serum metallo-binding 
proteins in competition with gallium. 

Blockade of the Target Volume of Distri-
bution 

Thyroid: Perhaps the earliest reported, 
most widely studied, adequately documented 
and best understood series of drug-radiophar-
maceutical interactions are those relating to 
the thyroid uptake of iodine and radioiodine.  
In a series of studies dating from the 1940s, it 
has become apparent that a large number of 
pharmaceuticals and diagnostic agents impact 
upon the uptake, organification or retention 
of iodine by the thyroid gland (97 – 128).  
Some of these agents are listed in Table 2.  
They include not only stable iodine itself, but 
also dessicated thyroid and a number of drugs 
including the iodine released from the or-
ganically bound element in radiographic con-
trast media.  The wealth of evidence and the 
intuitive nature of the interactions are such 
that, while most of the data were collected 
before the era of systematic reviews, most of 
the evidence is both robust and supported by 
animal data (equivalent to level 2A, H).  It 
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must be noted that exogenous iodine in ex-
cess may not only interfere with studies of 
the thyroid gland using the radioactive iodi-
nes but also precipitate thyroid dysfunction. 

Table 2.  Some Drugs Reported to Nega-
tively Influence Thyroid Uptake of (ra-
dio-) Iodine 

Anti-thyroide medication, 
e.g. propylthiouracil 

Radiographic con-
trast media 

Amiodarone Salicylates in large 
doses 

Aminobenzenes Sodium nitroprusside 
Antihistamines Sulfonamides 
Bromides Thiocyanate 
Butazolidin Topical iodine 
Glucocorticoids Thyroid replacement 

medication 
Iodine-containing medica-
tions, e.g. Lugol’s solution, 
potassium iodide, etc.  

Vitamin A 

Isoniazid  
Nitrates (“herbal remedies” 

e.g. kelp) 
Perchlorate (Table salt) 
Phenylbutazone (Vitamin-mineral 

mixtures) 
 
Adrenal medulla: Meta-iodobenylgua-

nidine (MIBG), labeled with I-123 or I-131, 
has become extensively used in the diagnosis 
and treatment of disorders of the adrenal me-
dulla and neural-crest-derived tumors, as well 
as in other applications such as measuring 
adrenergic cardiac innervation (129, 130). 
However, the mechanism of uptake is com-
plex and due to two different mechanisms 
(131 – 133).  It is also liable to interference 
from a wide variety of drugs including some 
“over-the-counter“ medications (levels 3A, 
H) (134 – 137). Wakabayashi et al. have re-
ported that, in animals, cilazapril and vera-
pamil increase the uptake of radiolabeled 
MIBG in cardiomyopathy, whereas with pro-
gressive disease the reverse is true (level 
3A)(138).  Equally Meco et al. have found in 

a human neuroblastoma cell line that cisplatin 
and doxorubicin block the cell and lead to 
increased uptake of I-125 MIBG, thereby po-
tentially increasing the radiation dose deliv-
ered (in vitro data)(139).  Solanki et al. and 
others have published guides to those drugs 
that interfere with radioiodinated MIBG up-
take and the list tabulated in Table 3 is de-
rived from those publications which should 
be consulted in full (133, 134, 137, 140). 

 
Figure 5. Qualitative pharmacokinetic 
model illustrating uptake blockade with 
retention of the tracer in the vascular com-
partment. 

 
Adrenal cortex: Adreno-cortical gland 

function may be imaged and quantified.  This 
is achieved by labeling one of the cholesterol 
analogues that are precursors of cortisol 
(141).  Again a number of medications either 
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Table 3. Some Drugs, Including Over-the-Counter Medications, Liable to Influence Adre-
nal Uptake of Metaiodobenzylguanidine 

Antipsychotic medication: Other antidepressants Sympathomimetics* 
Butyrophenones Maprotiline Ephidrine 

Droperidol Trazalone Phenylephrine 
Haloperidol Bethanidine Phenylpropanolamine 
Pimozine Bretylium tosylate Pseudoephidrine 

Phenothiazines Calcium channel blockers Beta-sympathomimetics 
Chlorpromazine Nifedipine Albuterol 
Fluphenazine Verapamil Isoprotenerol 
Prochlorperazine (Cocaine) Terbutaline 
Promethazine Debrisoquine Dopamine 
Trifluoperazine, etc. Labetalol Metaraminol 

Thioxanthines Reserpine Tricyclic antidepressants 
Chlorprothixene  Amitriptyline 
Thiothixene  Doxepin 

  Imipramine 
  Loxapine 
*There are theoretical grounds for suspecting that a wider range of this class of drugs should be included such as amphetamine-like drugs. 

 
interfere with or can be used to probe adrenal 
function, ranging from competitive inhibition 
by glucocorticoid analogues or the inhibition 
of 11ß-hydroxylation by metyrapone 
whereby cholesterol is converted to cortisol  
(level 3A, 4H)((142 – 146).  

Bone: There are a number of case reports 
indicating that etidronate, the first-generation 
biphosphonate (or bisphosphonate), used 
mainly to treat post-menopausal osteoporosis 
and Paget disease of bone, prevents the nor-
mal uptake of Tc-99m labeled bone-seeking 
agents (levels 4A, 6H)(Fig. 2)(147 - 154).  
However, one of the second-generation bi-
phosphonates (bisphosphonates) – alendro-
nate - has been studied prospectively in a 
small trial and does not have this effect (level 
3H)(155).  Nor does clodrinate, a member of 
the same drug sub-family although one that is 
often given intravenously in the treatment of 
bone metastases as in this particular study 
(level 4H)(156).  
This difference is more realistic than may at 
first appear to be the case.  Second generation 

bisphosphonates are nitrogen containing and 
have a different cellular locus of action from 
etidronate, the first generation drug that is 
neither nitrogen containing nor as potent as 
its successors (157).  New strategies for 
modulating bone in the treatment of osteopo-
rosis, either by the potentiation of bisphos-
phonates (158) or otherwise (159) may mod-
ify this conclusion.  However, between the 
mid-1990s and 2004 the second generation of 
bisphosphonates has been introduced and has 
become widely used, often replacing etidro-
nate (157).  The lack of any case reports 
(with one exception) to compare with the ear-
lier ones implicating etidronate tends to sup-
port the work of Carrasquillo et al. (155) and 
Koizumi et al. (160) and suggests that their 
findings are true in respect of all members of 
the class of second-generation bisphospho-
nates.  The exception is in respect of a single 
patient reported by Koyano et al. in whom 
there is uncertainty about the implication of 
the altered uptake because of co-existing hy-
percalcemia (level 6H) (161). 
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Consistent with this, Buja et al. (162) 
have found in animals that etidronate 
(EHDP) also interferes with experimental 
myocardial uptake of Tc-99m phosphates 
(level 3A). 

Hyperphosphatemia has been reported as 
a result of administering Phospho-Soda for 
bowel cleansing (163).  Saha et al. have at-
tributed the failure of a Tc-99m phosphonate 
agent to distribute into bone in one patient  to 
daily doses of Phospho-Soda blocking sites 
of potential bone uptake of the tracer (level 
6H) (159). 

Brain: Elfving et al. have found, in ani-
mal experiments, that all but one [zoletile] of 
four anesthetic agents they tested modify the 
cerebral uptake of labeled neuro-receptors 
(level 3A) (165).  

Spleen: Octreotide treatment diminishes 
splenic uptake by somatostain receptors in a 
dose related manner (166). 

Modification of the Target Volume of Dis-
tribution – Expanded Volume  

Drugs have been found to modify the tar-
get volume of distribution and they may do 
so either by expanding or decreasing the tar-
get volume (Figure 6). 

Bone:  Tc-99m MDP is typically used to 
image remodeling bone. Drugs such as 
isoretinoin that cause bony proliferation have 
been found to result in images reflecting that 
proliferation (Level 6H) (167). In case re-
ports, methotrexate became associated with 
an osteopathy characterized by microfractur-
ing and even gross spinal fracturing all evi-
dent not only on imaging with Tc-99m phos-
phates but also on plain radiographs (level 
5H) (168, 169).  More recent evidence sug-
gests that these changes are likely the result 
of marrow infiltration by the malignant dis-
ease being treated with methotrexate.  The 
drug itself may either be only partly respon-
sible or not responsible at all.  Klingensmith 
et al. have also found that growth hormone 
(GH) therapy in GH-deficient children ap-
pears to increase the uptake of Tc-99m MDP 

in bony metaphyses, shafts, and in muscle to 
a similar extent, and this increase appears to 
occur in most patients early after initiation of 
therapy (level 5H) (170). 

Figure 6. Qualitative pharmacokinetic 
model illustrating a modification of the tar-
get volume of distribution – its expansion is 
illustrated. 

 

Osteogenesis imperfecta may be effec-
tively treated with the bisphosphonates (171).  
In children with growing bones so treated it 
has been observed that horizontal metaphy-
seal lines or bands result, on appropriate ra-
diographs, corresponding to episodes of ther-
apy (172 – 4).  There is anecdotal evidence 
that these bands are associated with locally 
increased uptake pf Tc-99m MDP.  

The adequate treatment of bone lesions, 
chiefly metastases but also osteomalacia, 
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may result in an initial and paradoxical in-
crease in radionuclide uptake.  This has been 
called the “flare” phenomenon (level 5H) 
(175 – 188).  The temporal evolution of this 
finding has been incompletely studied but 
eventually it results in the expected decrease 
of activity if treatment is effective.  Indeed 
Coleman et al have found that a “flare” is in-
dicative of the efficacy of treatment (182).  

Hypervitaminosis D has been found to be 
a possible cause of a generalized increase in 
uptake of Tc-99m phosphate in bone (the so-
called super-scan) in three patients (level 6H) 
(189).  Also chemoperfusion of a limb has 
been reported to cause increased activity in 
bones of the treated extremity by a mecha-
nism that is obscure (level 6H) (190). 

Fluorine intoxication resulting from 
drinking excessive amounts of mineral water 
has been found to result in increased uptake 
of Tc-99m MDP in the sternum and bony 
metaphyses on bone imaging (191). 

Glucocorticoids, given in sufficient doses 
over a long enough period of time, may cause 
secondary osteoporosis with loss of bone 
density and increased fracture risk.  Severe 
osteoporosis itself has been associated with a 
diffuse decrease in Tc-99m MDP uptake in 
the skeleton presumably reflecting the re-
duced bone mass (level 6H)(192). However, 
a further complication of glucocorticoid 
and/or chemotherapy may result with focal 
changes in uptake in the femoral head associ-
ated with avascular necrosis (level 4H) (193 
– 197).  Paradoxically there are animal data 
to suggest that the sensitivity of bone scan-
ning is compromised by glucocorticoid 
treatment (level 4A) (198). 

Bone marrow:  Bone marrow hyperemia 
may be seen on images (such as with Tc-99m 
chelates used for renal imaging) reflecting 
either tumor involvement of the marrow 
space, or marrow regeneration (partly un-
documented, 6H) (199).  However, with the 
recognition that “bone” metastases are more 
often the result of tumor spread into marrow 

then bone marrow has become of greater in-
terest (200).  Notably, F-18 FDG has been 
found to localize in normal bone marrow in-
duced by colony stimulating factor (CSF) as 
well as in CSF induced extra-medullary he-
matopoiesis (level 6H) (201 – 205).  Charac-
teristic findings have also been noted in this 
context on bone imaging (level 6H) (199). 

Thymus: The thymus is an organ that 
perplexed early radiologists because it repre-
sented, on chest radiographs of children, an 
organ they were not used to seeing in adults.  
It has caused almost as much perplexity in 
nuclear medicine and several of the reports 
documented here record diagnostic errors 
rather than insights.  In children before pu-
berty the thymus demonstrates uptake of Ga-
67 citrate to a variable extent.  Such uptake, 
as well as that of F-18 FDG, is enhanced not 
only by chemotherapy of malignant disease 
but also by treatment of infections (level 5H) 
(206 – 214).  This phenomenon has been de-
scribed as thymic rebound or regeneration 
and its specific localization may be made 
more effective by use of single-photon tomo-
graphy (203).  Given the importance now at-
tributed to the thymus in immunological re-
sponsiveness it is not surprising that its meta-
bolic status varies with disease and its treat-
ment.  Thus, anterior mediastinal uptake of 
Ga-67 or F-18 FDG in children should be 
evaluated with great caution.   

Breast:  That radionuclides such as the 
Tc-99m phosphates and Ga-67 citrate local-
ize inconsistently in breast tissue is well rec-
ognized (215 – 216).  It has been assumed 
that the degree of breast uptake may relate to 
timing in the menstrual cycle as well as lacta-
tion or breast glandular involution.  Breast 
enlargement (gynecomastia) itself is often 
drug-related (217).  Drugs that typically may 
induce gynecomastia are estrogen analogues 
(for example when used to treat prostate can-
cer) (217).  Gynecomastia is particularly as-
sociated with enhanced radio-pharmaceutical 
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uptake and the result is clearly evident on 
appropriate images (level 6H) (218 – 223). 

Modification of the Target Volume of Dis-
tribution – Decreased Volume  

Bone: Paget disease of bone has long 
been recognized as a cause of increased up-
take of Tc-99m phosphates in affected bone.  
Successful treatment with mithramycin, first 
and second generation bisphosphonates (157) 
or calcitonin may reduce this degree of ab-
normality (level 5H) (224 – 233).  The same 
is true of the uptake of Ga-67 by Pagetic 
bone, and Waxman et al. have suggested that 
this tracer may be a better indicator of thera-
peutic effectiveness than Tc-99m MDP level 
6H) (231, 232).  Of interest, none of these 
reports relating to etidronate indicate the re-
duced bone uptake otherwise noted and de-
scribed above (148 – 152). 

Crawford and Gumerman have reported 
that injection of iodine-containing radio-
graphic contrast medium after Tc-99m phos-
phate is administered intravenously, but be-
fore the bone images are made, results in a 
generalized decrease in uptake of tracer (level 
6H) (226).  As noted above, there are animal 
data to suggest that the sensitivity of radionu-
clide bone imaging is compromised by glu-
cocorticoid treatment (level 4A) (233). 

Bone Marrow: Ishibashi et al. report a 
patient with myelomatosis and increased 
marrow uptake of thallium–201 thallous 
chloride.  After appropriate chemotherapy the 
marrow cellular findings improved along 
with a fall in radiotracer uptake, but of note 
there was no change in the MRI signal from 
bone marrow (level 6H) (234). 

Liver: Kaplan et al. have reported that 
about half of 15 patients studied had patchy 
reductions in uptake of radiocolloid by the 
liver, altered liver function tests or both after 
chemotherapy (level 5H)(235).  There were 
equally inconsistent findings in respect of 
radiocolloid liver imaging in a group of pa-
tients with psoriasis treated with long-term 
methotrexate (level 5H)(236).  

Datz lists a number of drugs (phenothiaz-
ines, isoniazid, adriamycin, phenobarbitone, 
testosterone, estrogens, oxacillin, tetracy-
cline, warfarin and toxic doses of vitamin A) 
as causes of inhomogenous uptake of radio-
colloid on liver-spleen scans (level uncer-
tain)(237). 

Nicotinamide in large doses is hepato-
toxic (238) and has been reported to prevent 
hepatic extraction and transport of Tc-99m 
imminodiacetic acid analogues (level 6H) 
(239), a finding contradicted by Shafer et al. 
(in vitro data and level 4A)(240).  What may 
be more certain is that hypervitaminosis-A 
causes discordant liver uptake of radiocolloid 
and Tc-99m imminodiacetic acid analogues 
with radiocolloid extraction being preserved 
(level 6H)(241).  But Park et al. question if 
the same finding they observed when exam-
ining hepatocyte function with Ga-67 citrate 
might be due to the tracers employed rather 
than the disease in question (level 6H)(242).  
Hepatic toxicity from erythromycin has also 
been reported as a rare cause of a false posi-
tive scan using a Tc-99m imminodiacetic 
acid analogue (level 6H)(243). 

Sentinel lymph node detection: Vigario 
et al. have compared, in a prospective study, 
two groups of patients having lymphoscinti-
graphy to detect sentinel nodes.  One group 
had had prior chemotherapy; the second was 
a control group.  Using nodal dissection and 
histology as the reference standard, sensitiv-
ity was impaired in the chemotherapy group: 
seven and one false negative result respec-
tively being encountered (p = 0.01)(level 2H) 
(244). 

Tumor imaging: Dextrose administra-
tion, like insulin injections within two hours 
of the radiotracer administration, results in 
increased uptake of F-18 FDG uptake in mus-
cle but decreased tumor uptake resulting in a 
decreased standardized uptake value (SUV) 
(245 – 247). 
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Creation of an Unexpected Volume of 
Distribution – Toxicity 

This is probably the commonest way in 
which a medication will manifest itself on a 
nuclear medicine examination.  The unex-
pected site of distribution usually correlates 
with either some physiological change or 
with drug toxicity but it is not necessary for 
clinical symptoms or other evidence of such 
toxicity to be apparent before the scan find-
ings are detected.  By the same token, radio-
pharmaceuticals are often more sensitive than 
radiography.  For example, a drug such as 
bleomycin causes pulmonary interstitial dis-
ease ultimately detectable on a chest radio-
graph.  However, in appropriate patients dif-
fuse gallium-67 uptake in the lung may indi-
cate bleomycin pulmonary toxicity despite a 
“normal” radiograph (level 3H)(10, 248).  Of 
radiopharmaceuticals involved, non-specific 
disease markers such as gallium-67 are 
among those most often implicated in the 
recognition of drug toxicity – emphasizing 
the role of gallium-67 as a non-specific dis-
ease finder. 

Colon - pseudomembranous colitis: This 
inflammatory condition of the large bowel 
arises from prolonged administration of cer-
tain antibiotics.  The colon becomes edema-
tous to a degree that may be recognized ra-
diographically. Localization of Tc-99m MDP 
probably occurs non-specifically because of 
the expanded interstitial space (level 6H) 
(249) but the disease may also be recognized 
on images made with radiopharmaceuticals 
such as Ga-67 citrate and radiolabeled granu-
locytes that probe more specific aspects of 
this disorder that is associated pathologically 
with inflammatory infiltrates (level 6H) (250 
– 253). 

Lung: A number of drugs used chroni-
cally cause pulmonary toxicity  Some of the 
agents involved, together with their mecha-
nism of action, so far as is it is understood, 
are listed in Table 4 (254 – 256).  The major-
ity of these have been associated with gal-

lium-67 localization (level 4A,H)(238, 257 – 
270).  However, such disease has also been 
detected using labeled granulocytes (level 
6H)(271, 272) and F-18 FDG (level 6H) 
(273).  In a prospective study, however, tech-
netium-99m DTPA aerosol scintigraphy has 
been found to be potentially more sensitive to 
such changes (level 3H)(274). 

Table 4. Drugs Causing Pulmonary Inter-
stitial Disease with an Indication of the 
Mechanism Involved [after Rossi et al.] 
(255) 

Mechanism 
of Injury Drugs Implicated 

Diffuse  
alveolar  
damage 

Bleomycin, busulphan, carmustine, 
cyclophosphamide, gold salts, mi-
tomycin, and melphalan.  

Nonspecific 
interstitial 
pneumonia 

Amiodarone, carmustine, chloram-
bucil and methotrexate. 

Bronchiolitis 
obliterans 
organizing 
pneumonia 

Amiodarone, bleomycin, cyclo-
phosphamide, gold salts, meth-
otrexate, nitrofurantoin, penicil-
lamine and sulfasalazine.  

Eosinophilic 
pneumonia 

Nitrofurantoin, nonsteroidal anti-
inflammatory drugs, para-
aminosalicylic acid, penicillamine 
and sulfasalazine. 

Pulmonary 
hemorrhage 

Anticoagulants, amphotericin B, 
cyclophosphamide, cytarabine (ara –
C) and penicillamine.   

 
Acute lung toxicity resulting from vola-

tile anesthetic gasses has been studied by 
Hung et al. using Tc-99m hexamethylpropyl-
ene amine oxime (HMPAO) and Tc-99m la-
beled diethylene triamine pentaacetic acid 
(DTPA).  These investigators concluded that 
halothane and isoflurane caused detectable 
transient pulmonary vascular endothelium 
damage as detected using Tc-99m HMPAO 
and isoflurane caused increased alveolar 
epithelial permeability as detected using Tc-
99m DTPA (level 4H)(275, 276).  These ob-
servations are of uncertain relevance to clini-
cal practice. 
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Figure 7. Qualitative pharmacokinetic 
model illustrating uptake in an expanded 
volume of distribution (often to be equated 
with tissue toxicity). 

 
 
An unusual form of pulmonary toxicity 

has been reported following contrast lym-
phangiography – a technique still of some 
limited usefulness (277).  That pulmonary oil 
embolization results is known to occur (278) 
and the localization of Ga-67-citrate in the 
lungs of such patients is consistent with a lo-
calized inflammatory response (level 5H) 
(279).   

Heart: The most notable example of 
drug-related cardiac toxicity is that resulting 
from adriamycin and its analogues (280, 
281).  Like ischemic disease of cardiac mus-
cle this results in abnormal myocardial up-
take of Tc-99m phosphates (cumulative level 
5H)(282-291). Such drug-related cardiac tox-

icity also results in disturbances of cardiac 
function recognizable on radionuclide angio-
cardiography (level 3A,H)(276, 282 - 301). 

Muscle:  Cardiac toxicity can be consid-
ered to be a special case of skeletal muscle 
toxicity and a number of drugs cause such 
toxicity and may be recognized on images 
made with Tc-99m phosphates.  Examples of 
the drugs involved are alpha-interferon, 
isoretinoin, the statins, epsilon amino caproic 
acid and ethyl alcohol.  The pathological 
changes induced by the offending drugs are 
variously reported as a myopathy, polymy-
ositis or rhabdomyolysis but these have in 
common, as in other contexts, uptake of Tc-
99m phosphates (level 6H)(302 - 308) in the 
abnormal muscle. Again in keeping with 
findings in respect of the myocardium, the 
myopathy associated with the statins is not 
detectable from images made with Tc-99m 
methoxy isobutyl isonitrile (MIBI) (level 
5H)(309). 

Kidney: That a number of drugs are 
nephrotoxic is well known (310).  A myriad 
of reports testify to the fact that Ga-67 citrate 
localizes to an increased extent in kidneys so 
affected (level 4A,H)(311 – 322).  It is im-
portant to realize that the reverse is not true in 
that this phenomenon is seen in normal kid-
neys and may not be observed in the presence 
of disease (317, 323).  

Klintmalm et al. have found that cyc-
losporine renal toxicity in transplant recipi-
ents is associated with decreased renal func-
tion but relatively preserved perfusion (level 
4H)(324). In another study radiolabeled 
platelets localized uniformly in kidneys with 
cyclosporine toxicity but with a degree of 
specificity that provided no diagnostic power 
(level 4H)(325).  In detailed prospective stud-
ies, Britto et al. and Shihab-eldeen et al. have 
demonstrated multi-organ (including renal) 
toxicity from vincristine and cyclosporine but 
the changes are of uncertain relevance to 
clinical practice (level 4A)(326, 327). 
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Liver: Flynn has reported a single child 
in whom methotrexate hepatotoxicity re-
sulted in localization of Tc-99m MDP in the 
liver (level 6H)(328). 

Stomach: The impact of vitamin D in-
toxication on the skeleton has been noted 
above (189) but there is also a report of mas-
sive gastric uptake of Tc-99m MDP as a re-
sult of excessive uptake of vitamin D in 
health food supplements and milk.  The find-
ing resolved with cessation of the administra-
tion (329) 

Multiple organs: Havens et al. have re-
ported a patient with an overdose of chloro-
quine in whom Ga-67 uptake was noted at 
the several sites of the known organ toxicity 
of this drug (level 6H)(330).  

Creation of an Unexpected Volume of 
Distribution – Non-Toxic 

Tumor or disease imaging – splenic 
visualization: As noted previously, F-18 
FDG imaging will reflect bone marrow re-
generation and metabolic activity resulting 
from administration of CSF (201 – 205).  In-
cidental to imaging with the same tracer, 
there has been observed extra-medullary he-
matopoiesis in the spleen, and potentially this 
may occur at other such sites (level 6H)(331, 
332). 

Tumor or disease imaging – lung visu-
alization: Bacillus Calmette-Geurin (BCG) 
has been administered to provoke an immu-
nological response to cancer.  A pneumonitis 
has been observed as a result (333, 334), as 
well as more recently in a patient treated with 
BCG for superficial bladder cancer (335).  
There are data to indicate that lung uptake of 
Ga-67 citrate will reflect pneumonitis as 
might be anticipated (level 4H,A)(334, 336, 
337). 

Tumor or disease imaging – lymph 
node visualization:  Phenytoin is known to 
induce lymph node hyperplasia in some pa-
tients – a phenomenon that has been found to 
be reflected in detectable increases in Ga-67 

citrate uptake in the hilar lymph nodes of 
such patients (level 3H)(338). 

Paradoxical changes in pulmonary 
perfusion: Heparin is typically administered 
to reduce venous clotting and prevent pulmo-
nary thrombo-embolism.  In a small subset 
(about 1%) of patients, a thrombocytopenia 
results with thrombotic complications (the 
so-called “white clot” syndrome) leading to 
embolization and a worsening of pulmonary 
perfusion as imaged by Tc-99m macroaggre-
gates (cumulative level 3H)(339 – 342).   

Bone imaging – metastatic calcifica-
tion: Hypercalcemia is recognized to result in 
soft-tissue “metastatic” calcification – typi-
cally occurring in the kidneys, lungs and 
stomach, but less often in other organs and 
tissues.  Such sites are identifiable on bone 
scans.  Listed causes include some medica-
tions and disease states such as hypervitami-
nosis D, phosphates and glucocorticoids as 
well as milk-alkali syndrome which may be 
contributed to by antacids (level of evidence 
uncertain)(343). 

Bone imaging – liver visualization: 
Poulton has observed intravenously injected 
iohexol to cause Tc-99m MDP to localize in 
the liver and spleen (level 6H)(344).  How-
ever, a much more widely investigated ex-
ample of this is due to increased serum alu-
minum concentrations including those that 
result from antacid medications (level 4A,H) 
(345 – 350). 

As previously noted the use of an iron 
colloid-chondroitin sulfate complex (Blutal, 
Yuham Co., An Yang, Korea) appears to 
bind Tc-99m MDP by transchelation and the 
resulting particulate is phagocytosed into the 
reticuloendothelial system (level 6H)(69).  

Bone imaging – renal visualization: Lu-
trin et al. observed intense renal parenchymal 
uptake of radioactivity in 17 of 265 bone 
scans done in children receiving chemother-
apy for various malignant diseases.  In a ret-
rospective analysis, it was found that uptake 
occurred when imaging was performed 
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within one week of cancer chemotherapy 
with cyclophosphamide (p < 0.05), vincris-
tine (p < 0.01), and doxorubicin (p < 0.02).  
None of the 265 scans showed intense renal 
uptake unless the patient received chemo-
therapeutic drugs in the preceding week.  
This finding did not seem to result from al-
tered renal function, and the exact cause has 
not been defined (level 4H)(351).  This find-
ing was echoed in a report from Trackler in 
respect of amphotericin B therapy (level 6H) 
(352, 353).  McAfee et al. found that in-
creased renal uptake of 99m-Tc MDP was 
observed irregularly in rats after meth-
otrexate, vincristine or gentamicin, adminis-
tered separately. Cisplatin regularly induced a 
dose-related increase in renal uptake of Tc-
99m MDP that correlated with the degree of 
tubular damage histologically. The aug-
mented renal uptake of Tc-99m MDP was 
not consistently accompanied by a decreased 
clearance of simultaneously injected I-131 
iodohippurate, particularly at lower drug dose 
levels. These investigators concluded that in 
this model drug-induced renal retention of 
MDP by a factor of two or more above nor-
mal appears to be a useful indicator of tubular 
damage when other parameters of renal func-
tion are sometimes normal (level 4A)(354).  
Chen et al. report that Tc-99m MDP-
gentamycin interactions can be averted in 
respect of this nephrotoxic agent by monitor-
ing plasma levels of gentamycin (level 3H) 
(355). 

McRae et al. report that sodium gluconate 
causes bone-seeking tracers to transform into 
Tc-99m gluconate and localize in the kidney.  
This reaction is accelerated by injected cal-
cium and iron (in the ferrous state) lending 
support to the observations above concerning 
the interaction of iron and bone scanning 
agents (level 5H)(356). 

Bone imaging – the sickle sign: A side-
effect of intensive cytotoxic treatment on 
bone scanning that Creutzig and Dach choose 
to call the "sickle sign" amounts to a diffuse 

activity over the calvarium seen only in pa-
tients receiving this therapy.  It is distin-
guishable from metastases by a vertex view 
in which the activity is uniform not patchy.  
Although not advanced by the authors, a pos-
sible explanation is that of marrow activation 
or extension in response to the treatment 
(level 6H)(357).  

Bone imaging – abdominal activity: 
McDevitt et al. report a patient who had a Tc-
99m MDP bone scan while on continuous 
ambulatory dialysis.  Diffuse abdominal ac-
tivity was noted. The investigators hypothe-
size that the Tc-99m MDP diffused across the 
peritoneal membrane.  They were able to 
show that diffusion will occur across a semi-
permeable membrane (in vitro data, level 6H) 
(358). 

Bone imaging – blood pool visualiza-
tion: The amount of stannous ion in a bone 
scan preparation may be sufficient to reduce 
the technetium, either in the preparation or 
administered separately as sodium Tc-99m 
pertechnetate, resulting in red blood cell ra-
diolabelling (see below) and yielding images 
with varying degrees of blood pool visualiza-
tion (level 3H)(359, 360). 

Renal imaging – gall-bladder visualiza-
tion: Hinkle et al. carried out a chart review 
looking for patterns of altered biodistribution 
of Tc-99m glucoheptonate associated with 
other factors. The data did suggest the possi-
bility that penicillamine, penicillin G potas-
sium, penicillin V potassium, acetaminophen, 
and trimethoprim-sulfamethoxazole might 
cause increased hepatobiliary clearance of the 
radiopharmaceutical. Subsequent animal tests 
showed that i.v. penicillamine caused sub-
stantial distribution of radioactivity into the 
gallbladder and small bowel (level 4AH) 
(361). 

Planar brain imaging – visualization of 
blood-brain barrier defects: Brain edema 
and the blood brain barrier relate to planar 
imaging which is no longer greatly used.  
However, there are data respecting “drug” 
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effects that may be relevant to other methods 
of examining the brain.  Cerebral edema may 
be due to either intracellular or extracellular 
fluid accumulation (362).  The latter is typi-
cally seen in tumors.  However, vascular 
permeability in the brain may be increased in 
the short term by contrast agents used in 
cerebral angiography and demonstrated by 
radionuclide brain imaging (level 6H)(363).  
At 24 hours post-administration the alteration 
in vascular permeability may no longer be 
evident (level 6H)(364).  Methotrexate or 
other cancer chemotherapy, administered sys-
temically or intrathecally, also causes brain 
toxicity with abnormal findings in patients in 
whom the blood-brain barrier is challenged 
with radiopharmaceuticals (level 6H)(365 – 
367).  A further effect of medication in this 
context is that of glucocorticoids which re-
duce blood-brain barrier permeability in dis-
ease and thus decrease the conspicuity of 
brain tumors and metastases upon diagnostic 
images, which also includes their imaging 
with Ga-67 citrate (level 4H and 6H and cor-
relative CT)(368 – 373).  

Xenon ventilation imaging – visualiza-
tion of liver and bone marrow: While 
chemically inert xenon is very fat soluble 
(374) and dissolves in blood, it may then lo-
calize in fatty deposits such as focal and dif-
fuse liver steatosis (375) and in fatty infiltra-
tion of bone marrow.  Xenon-133 uptake in 
liver steatosis resulting from hepatotoxic 
medication has either been reported, or there 
are theoretical grounds to believe it may oc-
cur, in patients on clofibrate medication or 
receiving total parenteral nutrition (level 6H) 
(376 – 381).  In the same way bone marrow 
uptake of xenon-133 has been observed 
(382).  In one patient reported by Katz et al. 
the only potential explanation was the fatty 
marrow replacement known to result from 
long-term glucocorticoid therapy (level 6H) 
(383).   

Pertechnetate imaging of thyroid, ec-
topic gastric mucosa, etc. – visualization of 

blood pool: Sulfonamides, aluminum con-
taining antacids (or any cause of hyperalu-
minemia) and, as previously noted, prepara-
tions containing an excess of stannous ions 
have the potential to result in labeling of red 
blood cells (359, 360).  Tin (SnII) does this 
by reducing the Tc-99m  sodium pertech-
netate (385 – 390) but the mechanisms of ac-
tion of aluminum (347) and sulphonamides 
(390) are unknown (level 3H). 

Labeling of red blood cells (in vitro 
and in vivo) – poor labeling efficiency: A 
great variety of drugs (see Table 5) impair the 
efficiency of red cell radiolabeling (in vitro 
data, levels 4H,A)(390 – 410).  Mechanisms 
for some have been proposed (14) but little is 
known, not only of the mechanisms involved 
but also dose effects or temporal factors 
(400).  Indeed data are often conflicting.  
However, in a report unusual in that it de-
scribes negative findings, Nascimento Car-
dosa et al. report that they found no effect of 
propanalol, cyclosporine, adriamycin, and 
nifedipine on in vitro labeling (410) and in 
general in vitro methods tend to minimize 
these drug-induced constraints. 

Table 5. Drugs that Influence the Effi-
ciency of Red Cell Radiolabeling 

Adriamycin Iodinated contrast agents 
(Blood transfusions) Prazosin 
Digoxin Sulphonamides 
Heparin Some anti-neoplasic agents 

 
Labeling of white blood cells – poor la-

beling efficiency: MacGregor et al. have ob-
served inhibition of granulocyte adherence 
and false negative results in patients treated 
with lidocaine (in vitro data, 4H)(411).  Tha-
kur et al. have found reduced chemotaxis in 
labeled white cells exposed to lidocaine and 
procainamide (in vitro data)(412).  There are 
theoretical grounds (10) and some limited 
clinical data to suggest that antibiotics and 
glucocorticoids may also interfere with radio-
labeling of white blood cells but the limita-
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tion is clearly not absolute (413 – 414).  This 
subject has been reviewed by Sampson (415).  

Labeling of platelets – poor labeling 
efficiency: Heparin therapy in adequate 
doses has been reported to impair the use of 
labeled platelets to identify propagating 
thrombi – a result consistent with the known 
actions of this drug (level 4AH)(416 – 418). 

Liver imaging – lung trapping of ra-
dio-colloid: Aluminum ions from medication 
may be absorbed into the blood in amounts 
sufficient to cause aggregation of radiocol-
loid which then traps in pulmonary capillar-
ies (level 5H, as noted in one study of a pa-
tient who served as his or her own control) 
(419 – 423). 

Drug Interference with Radiopharmaceu-
tical Studies of Organ Kinetics 

There are many drugs used to modify or-
gan kinetics.  The numerous therapeutic ap-
proaches to the modification of cardiac func-
tion represent an example.  This is not the 
place to provide a primer describing such 
drugs. Instead the focus will be on the poten-
tial for drugs to cause misleading findings.  

Renal: Clorius et al. in a study of renal 
grafts found that furosemide significantly in-
fluenced renography – an observation that is 
almost intuitive (level 4H)(424).  Yee et al. 
found that ammonium chloride, mannitol and 
sodium bicarbonate changed the distribution 
of Tc-99m DMSA between liver and kidney 
in favor of the liver so that renal quantitation 
might be modified by the patient’s hydration 
state (level 3A)(425). Fritzberg et al. and 
Gomes et al., in human and animal experi-
ments respectively, provide further evidence 
of the need to control for medication and 
other physiological variables in renal studies 
(426, 427). 

Ventilation: Sedation has, for example, 
been shown to alter the distribution and dy-
namics of ventilation in man as studied with 
xenon-127, chiefly in reducing functional 
residual capacity (level 5H)(428).  

Biliary: Biliary studies are typically car-
ried out with pharmacological intervention, 
as in the use of phenobarbitone in evaluations 
of neonatal jaundice (429, 430). Biliary stud-
ies are typically done for the diagnosis of 
cholecystitis with cystic duct obstruction 
(431) and, if there is gall-bladder filling, bil-
iary contraction may be studied after admini-
stration of the active fragment of chole-
cystokinin (432).  However, of note false 
positive biliary studies with absent gall-
bladder filling have been reported as due to 
alcoholism, total parenteral nutrition, and 
erythromycin hepato-toxicity and possibly 
nicotinic acid toxicity (level 6H)(239, 240, 
433 – 435).  Narcotics are known to cause the 
appearance of biliary obstruction by inducing 
contraction of the spincter of Oddi (436 – 
440), but this is reversible with naloxone 
(441).  Householder et al. found scintigraphic 
evidence of the chemical cholecystitis known 
to occur with hepatic infusion chemotherapy 
in all ten of the patients they investigated 
(level 5H)(442).  

Cerebral blood flow: The importance of 
controlling for drug therapy in receptor and 
blood flow studies of the brain is illustrated 
by the literature on positron emission tomo-
graphic research studies of the brain, but such 
factors apply to studies with single-photon 
emission computed tomography as well 
(level 3AH)(443 – 444). 

Gastric emptying: Radionuclide meth-
ods have become the preferred way to meas-
ure gastric emptying (445 – 447).  In using 
the techniques available, however, it is neces-
sary to recognize the large number of drugs 
(see Table 6) (448) that alter gastric motility 
by increasing or decreasing the rate of empty-
ing (449 – 461).  The mechanisms are di-
verse, often poorly understood and have been 
examined by Hladik et al. (10).  Virtually all 
of the data derives from clinical studies (level 
5H) and the subject has been reviewed by 
Chaudhuri and Fink (461). 
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Table 6. Some Drugs Which are Known 
to Prolong Gastric Emptying 

Aluminum hydroxide gel Pentazocine (rat) 
Antacids (other) Metoclopramide 
Anticholinergics Morphine (narcotic 

analgesics) 
Atropine (aerosolized) Propantheline 
Levodopa Total parenteral nutri-

tion 
Nalbuphine (rat)  

 
Myocardial perfusion: Radionuclide 

methods are important in examining myocar-
dial perfusion (462, 463) and contractility 
(464).  The drugs modifying both are usually 
used as treatment interventions and are well 
understood, both in respect of perfusion im-
aging (variable, but in general level 2H)(462 
– 484) and function (variable, but in general 
level 2H)(478, 485 – 502).  Nevertheless, 
having an understanding of cardiac hemody-
namics and these drug effects are critical to 
the clinical use of these radionuclide meth-
ods. 

Gastric mucosa: Several drugs such as 
cimetidine, pentagastrin, glucagons and se-
cretin are known to modify Tc-99m pertech-
netate uptake by gastric mucosa and are used 
in nuclear medicine to enhance detection of 
ectopic gastric mucosa. Their effects are 
unlikely to be serendipitous. (level 3H) (503 
– 506). 

Gastroesophageal reflux: Reflux may 
be measured before and after treatment (507).  
Little or nothing is known of drug effects in 
this context which are incidental. 

EFFECTS WHEN RADIOTRACERS 
ARE ADMINISTERED OTHER THAN 
INTRAVENOUSLY 

Cerebro-spinal fluid studies:  Cerebro-
spinal fluid (CSF) dynamics are altered by 
acetazolamide (Diamox) with the potential to 
result in misdiagnosis from studies of CSF 
flow.  Acetazolamide inhibits the enzyme 
carbonic anhydrase and causes vaso-

constriction of blood vessels in the choroid 
plexus tending to reduce the production of 
cerebro-spinal fluid.  Papanicolaou has re-
ported abnormal cisternographic findings at-
tributed to this cause (level 6H with the pa-
tient acting as his or her own control)(508). 

ALTERNATIVE MEDICINE AND 
SELF-MEDICATION 

Not all the drugs being consumed or the 
treatments used by people will be conven-
tional physician-prescribed medications or 
catalogued in the US Pharmacopeia (USP).  
Awareness of this may clarify some unex-
pected scan findings.  Acupuncture, for ex-
ample, if used adjacent to bone has been 
found to excite a local bony reaction on scans 
made with Tc-99m MDP and I-131 sodium 
iodide (level 6H)(509, 510).  Sites of injec-
tion of mistletoe have been observed on In-
111 satumomab pendetide imaging (level 
6H)(511) while Ginkgo biloba, used in herbal 
medicine, impacts on the labeling of red 
blood cells (in vitro data)(407). 

The impact of recreational drugs on 
radiotracer biodistributions also threatens to 
become a topic in its own right.  For exam-
ple, there is an as yet obscure syndrome of 
increased skeletal mass and bone density 
with increased uptake of bone seeking agents, 
probably related in some or all of the patients 
to infection with hepatitis-C, that has been 
described in intravenous recreational drug 
users (level 2H)(512 – 514).  Ex-heroin users 
have been found to have pulmonary vascular 
disease detectable by scintigraphy (level 
5H)(515 – 517). “Crack” cocaine alters pul-
monary alveolar permeability (level 3H) 
(518), as well as causing abnormalities of 
brain perfusion (level 5H)(519). 

Another street drug, “ecstasy”, has been 
found to modify cerebral receptor imaging in 
the brain (level 3H)(520).  Heroin-induced 
rhabdomyolysis has been observed to cause 
chronic regional pain syndrome (formerly 
known as reflex sympathetic dystrophy) and 
recognized from bone scintigraphy (level 
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6H)(521).  However, drugs that are more 
generally sanctioned by society such as the 
caffeine in coffee (level 5H)(29), tobacco 
(403) or the smoke from cigarettes (level 4H) 
(5, 522) and alcohol (307, 433) have also 
been found to leave signatures on radiophar-
maceutical kinetics or biodistributions.  Gen-
eralizations are to be avoided in that, for ex-
ample, chronic smoking appears to slow gas-
tric emptying, but a similar finding does not 
result from the use of nicotine in chewing-
gum (level 5H)(524). 

Excessive self-medication may also result 
in changes to radiopharmaceutical distribu-
tions.  Vitamin D, already noted to influence 
the biodistribution of Tc-99m phosphates 
(189), may reach toxic concentrations from 
the compulsive ingestion of health food sup-
plements and milk.  In one patient reported 
the result was massive uptake of Tc-99m 
MDP in the stomach (level 6H)(329).  In an-
other patient drinking an excess of mineral 
water resulted over time in fluorine intoxica-
tion and fluorosis resulting in intense uptake 
of Tc-99m MDP in the axial skeleton, bone 
metaphyses and sternum (level 6H)( 191). 

To anyone used to working in a clinical 
setting, the value of careful history-taking has 
always been apparent and such observations 
serve to further emphasize that fact. 

THE FUTURE 
There is evidence that prospective studies 

of drug-radiopharmaceutical interactions 
(525 – 528) are being undertaken and even 
attempts made to model these interactions 
(513) so that published reports offer useful 
clinical data and thus become less anecdotal.  
As designer pharmaceuticals become more 
specific in their actions then their interactions 
with radiopharmaceuticals may tend to di-
minish in number and intensity. The contrary 
may prove true for the continued develop-
ment and use of probes in nuclear medicine.  
Imaging procedures using these agents will 
become more sensitive to subtle changes in 
physiological processes will increase the 

need, in proportion, for radiopharmacists and 
nuclear medicine physicians to control all of 
the patient-related variables, not just those 
due to medication alone. 
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QUESTIONS 

1. Which of the following does NOT char-
acterize drug interactions: 
a. Interactions require pharmacologi-

cally similar agents. 
b. They are dose related. 
c. Many are mediated by a family of 

isoenzymes known as cytochrome P-
450. 

d. They may occur independently of 
hepatic or renal clearance. 

2. On a Tc-99m MDP bone scan there is 
radiopharmaceutical localization in 
lymph nodes in the right axilla.  Your 
first reaction should be: 
a. To examine the patient to determine 

if there is lymph node enlargement. 
b. To examine the patient’s chart to de-

termine if there is tumor involvement 
of the axillary nodes. 

c. To examine the quality control data 
concerning that particular prepara-
tion. 

d. To image the injection site to evalu-
ate the possibility that part of the 
dose was injected interstitially.   

3. An evidentiary basis for medical practice 
optimally requires: 
a. An agreement by experts. 
b. Syntheses of prospective studies of 

adequate power. 
c. A randomized control trial. 
d. Legal sanction of drug interventions. 

4. Patients being treated for cancer may be 
given colony stimulating factor (CSF).  
In their follow-up, a positron emission 
tomography examination may be done 
using F-18 fluorodeoxyglucose.  If ab-
normally increased uptake is then seen in 
the spleen, which of the following do 
you most suspect: 
a. An immunological response. 
b. Extramedullary hematopoiesis. 

c. Splenic chemotherapeutic toxicity. 
d. Tumor recurrence in the spleen. 

5. For a radiopharmaceutical to be found to 
localize at the site of intramuscular injec-
tion of another drug which of the follow-
ing conditions may be necessary: 
a. Some physiological or chemical in-

teraction of drug and pharmaceutical. 
b. A localized inflammatory response. 
c. A radiopharmaceutical which clears 

from the tissues in hours rather than 
in minutes. 

d. All of the above 

6. Drug-induced lung toxicity is compatible 
with all of the following except: 
a. The patient in question is being 

treated with bleomycin. 
b. The patient in question is being 

treated with nitrofurantoin. 
c. The chest radiograph is normal. 
d. On a scan with gallium-67 citrate 

any uptake in the lung is focal. 

7. Which of the following statements about 
intravenous radiological contrast media 
is untrue: 
a. Their radio-opacity in sufficient con-

centration is due to their electron 
density as a result of their iodine 
content. 

b. The iodine remains 100%bound and 
thus has no physiological impact on 
the thyroid gland. 

c. Gadolinium chelates used in mag-
netic resonance imaging have not 
been proven to alter the biodistribu-
tion of radiopharmaceuticals. 

d. When used clinically they alter capil-
lary permeability distal to the injec-
tion site. 

8. Diphosphonates (or bisphosphonates) are 
used both in nuclear medicine diagnosis 
(labeled with Tc-99m) and the treatment 
of post-menopausal osteoporosis, cancer, 



 60

Paget disease of bone, etc.  In appropri-
ate patients the radiopharmaceutical and 
drug may interact except in which cir-
cumstance: 
a. The patient has normal bone density. 
b. The therapeutic diphosphonate is ni-

trogen containing. 
c. The treatment is weekly rather than 

daily. 
d. Bone turnover is not increased. 

9. Receptor-mediated uptake of radiophar-
maceuticals is a powerful tool in investi-
gating physiological and pathological 
processes. It is, however, subject to 
competitive inhibition by appropriate 
drugs as in all but which of the following 
circumstances:  
a. Thyroid uptake of iodine. 
b. Adrenal uptake of metaiodobenzyl-

guanidine. 
c. Brain uptake of I-123 iodoampheta-

mine. 
d. Tumor uptake of labeled octreotide. 

10. The thymus gland is involved in the de-
velopment of immunity and it involutes 
in adulthood.  Thymic uptake of gallium-
67 citrate may be seen in all but which of 
the following circumstances: 
a. In normal children. 
b. In some thymic tumors (thymomas). 
c. In all patients with myasthenia gra-

vis. 
d. In some children on completion of a 

course of chemotherapy. 

11. The intravenous injection of street drugs 
(“mainlining”) with contaminated nee-
dles may lead to hepatitis-C infection 
and all but one of the following potential 
consequences: 
a. A syndrome of increased bone den-

sity. 
b. Pulmonary disease characterized by 

unusual uptake of gallium-67 citrate. 

c. Reduced liver extraction of Tc-99m 
colloid and IDA analogues. 

d. Impaired gall-bladder contractility. 

12. Abnormally great localization of Tc-99m 
MDP in the kidneys has been observed 
in which of the following circum-
stance(s): 
a. Within 24 hours of injection of 

radiological contrast media. 
b. Cyclophosphamide treatment. 
c. After injection of iron-containing 

compounds. 
d. All of the above. 

13. Muscle disease (myopathy, polymyositis 
or rhabdomyolyis) may occur as a result 
of drug treatment, and may then be iden-
tified as abnormal muscle uptake of Tc-
99m MDP on a bone scan, in which of 
the following circumstances: 
a. Simvastatin therapy. 
b. Alpha –interferon therapy. 
c. Epsilon amino caproic acid therapy. 
d. All of the above. 

14. An image of the blood pool may result 
when a bone scan is intended after a 
Tc99m phosphate injection. A possible 
cause you might examine includes which 
of the following: 
a. An excess of tin (SnII) in the injec-

tate or in a prior injection of Tc-99m 
pertechnetate leading to labeling of 
red cells in vivo.  

b. Recent administration of iron dextran 
(FeII), or similar compounds given 
for therapeutic reasons, resulting in 
probable trans-chelation of the Tc-
99m. 

c. Recent administration of sodium 
phosphate laxative. 

d. All of the above. 

15. In vitro labeling of red blood cells may 
be preferred over the in vivo technique 
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because of which of the following rea-
sons: 
a. The potential of drugs to interfere 

with Tc-99m binding is minimized.  
b. The method is independent of the 

specific activity of the Tc-99m. 
c. The patients red cell volume is un-

important. 
d. The binding of the tracer is stable. 

16. In considering drug-radiopharmaceutical 
interactions, which of the following 
statements is true: 
a. Little is known of the bioavailability 

of radiopharmaceuticals in patients 
on treatments that alter their biodis-
tributions. 

b. Rarely are there data about the dura-
tion of drug-radiopharmaceutical in-
teractions. 

c. Rarely are there data about the dose 
dependancy of drug-radiopharma-
ceutical interactions. 

d. All of the above. 

17. Uptake of I-123 iodine in the thyroid is 
reduced by: 
a. Application of tincture of iodine 

(Lugol’s) to the skin. 
b. Thyroid stimulating hormone. 
c. Amiodarone. 
d. All of the above. 

18. In considering drug-radiopharmaceutical 
interactions which of the following state-
ments is true: 
a. The documented dosimetry of the 

radiopharmaceutical becomes inva-
lid. 

b. The non-radioactive drug involved 
suffers impaired efficacy. 

c. Such interactions only occur when 
drugs are administered in toxic 
doses. 

d. All of the above. 

19. New bone formation, detectable on Tc-
99m methylene diphosphonate images 
and radiographs, may be a side effect of 
which of the following medications: 
a. Vitamin D. 
b. Methotrexate. 
c. Non-steroidal anti-inflammatory 

medication. 
d. All of the above. 

20. Drug toxicity is most often seen as an 
incidental finding on images made with: 
a. Tc-99m methylene diphosphonate. 
b. F-18 fluorodeoxyglucose. 
c. Ga-67 citrate. 
d. In-111 and Tc-99m labeled granulo-

cytes. 

21. Tc-99m phosphates may be imaged as 
localizing in soft-tissue disease in which 
of the following situations: 
a. Myocardial infarction. 
b. Adriamycin induced cardiotoxicity. 
c. Alpha – interferon therapy. 
d. All of the above. 

22. The biodistribution of gallium-67 citrate 
is commonly modified by: 
a. An excess of metallic cations such as 

iron in the blood. 
b. Cancer chemotherapy. 
c. Antibiotic-induced renal toxicity. 
d. All of the above. 

23. Localization of I-123 metaiodobenzyl-
guanidine in the adrenal medulla is re-
duced by: 
a. Labetalol. 
b. Tricyclic antidepressants. 
c. Reserpine. 
d. All of the above. 

24. Sites of tissue toxicity detectable by Tc-
99m chelates include which of the fol-
lowing: 
a. Pseudomembranous colitis. 
b. Antibiotic induced nephrotoxicity. 
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c. Drug-induced myopathy. 
d. All of the above. 

25. Hyperaluminemia, including that result-
ing from medications containing alumi-
num, may result in which of the follow-

ing radiopharmaceuticals having altered 
biodistributions: 
a. Tc-99m phosphates. 
b. Tc-99m sulfur colloids. 
c. Ga-67 citrate. 
d. All of the above.  

 
 

 


